
X!TandemPipeline is one of the PAPPSO facility software projects

X!TandemPipeline User
Manual
Free and Open Source Protein Identification Software

X!TandemPipeline 0.4.43



X!TandemPipeline User Manual: Free and Open Source Protein Identification
Software
by Benoît Valot, Olivier Langella, Thomas Renne, Filippo Rusconi, and Michel Zivy

November 23, 2021 , 0.4.43

Copyright 2021 Filippo Rusconi and Olivier Langella

Thierry Balliau and Marlène Davanture are warmly thanked for their outstanding technical help while writing this user manual.

X!TandemPipeline

http://pappso.inrae.fr/en/bioinfo/

This book is part of the X!TandemPipeline project.

The X!TandemPipeline project is the successor of the Java language-based homonymous project. This project is a full rewrite of the

former project in the C++ language, with many new features added.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as

published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org

(http://www.gnu.org/licenses/) .

http://pappso.inrae.fr/en/bioinfo/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/


0.4.43

Revision History

Revision 0.7.24 28 May 2021 Filippo Rusconi

Start actually documenting the software with the Preface.

Revision 0.7.24 21 April 2021 Filippo Rusconi

Very rst setting up of the user manual using the mineXpert2 project as a template.



Dedication

To all the admirable people acting in the “Free Software Movement” for a better and more ethical computing
world

To all the readers who helped with this manual.

i X!TandemPipeline 0.4.43



Contents

Preface iv

1 Generalities 1
1.1 General concepts and terminologies 1

Bottom-up Proteomics or Top-down Proteomics? 1 • Typical cycle of a

mass spectrometer data acquisition 2 • Outline of an X!TandemPipeline

working session 2

1.2 Citing the X!TandemPipeline software. 3

1.3 Installation of the software 3

Installation on MS Windows and macOS systems 3 • Installation on

Debian- and Ubuntu-based systems 3 • Installation with an AppImage

software bundle 4

1.4 Building the software from source 5

The dependencies required to build X!TandemPipeline 5 • Getting the

source tarball 6 • Building of the software 6

2 Fundamentals in Bottom-up Proteomics 8

2.1 The Protein Biopolymer: Structure and Chemistry 8

Protein Biosynthesis 8 • Protein Disrupting Chemistries 10

2.2 General Overview of Bottom-up Proteomics 15

The First Step: Digestion of the Sample's Proteins 17 • Chromatographic

Separation of the Peptidic Mixture 18 • Mass Spectrometric Analysis of

the Peptides 19 • The Protein Databases and Their Use 20 • Matching

Fragmentation Spectra with Theoretical Spectra 21 • Phospho-

Proteomics 30

3 The main program window 32

3.1 Starting a new X!TandemPipeline working session 33

3.2 Running X!Tandem identifications 33

ii X!TandemPipeline User Manual



3.3 Setting the X!Tandem run presets 35

Loading existing presets configurations from file 36 • Creating

new presets configurations 37 • Actual X!Tandem presets

configuration 37 • Running a properly configured X!Tandem process 37

3.4 Loading identification results 38

Configuration of the parameters 40 • Saving X!TandemPipeline

projects 43

3.5 Loading X!TandemPipeline projects 43

4 Exploring identification data 44

4.1 The Protein Identifications List Window 44

The Protein Identifications List Table View 44 • Operations in the Protein

Identification List Window 46 • Delving inside the protein identification

data 50

4.2 The Peptide Identifications List Window 51

The Peptide Identifications List Table View 51 • Operations in the Peptide

Identification List Window 53 • Delving inside the peptide identification

data 53

4.3 Handling Phospho-Proteomics Data 57

5 Stuff awaiting inclusion 59

A GNU General Public License version 3 60

iii X!TandemPipeline User Manual



Preface

1 Software feature offerings and intended audience
This manual is about the X!TandemPipeline protein identification software project.

X!TandemPipeline has the following features:

Load mass spectometry data les in the mzXML or mzML format, thanks to the excellent libpwiz library
of ProteoWizard1 fame.

Configure the way the peptide spectrum matches (PSM) are to be performed;

Configure the database les to be used (target organism databases and contaminant databases);

Use the MS/MS data in the le to feed the X!Tandem program that produces peptide identification re-
sults by matching the measured ion masses with peptide fragments calculated in silico on the basis of the
databases contents;

Display the data in powerful ways in a unified graphical user interface to allow the user to inspect the pep-
tide identifications and also control the way these identifications are used to infer the protein identications.

2 Feedback from the users
We are always grateful to any constructive feedback from the users.

The PAPPSO software team might be contacted via the following contact page:

http://pappso.inrae.fr/en/travailler_avec_nous/contact/  (search for team members having the
“Bioinformatics” specialty mentioned, like Olivier Langella or Filippo Rusconi).

3 Program and Documentation Availability and
License
The programs and all the documentation that are shipped along with the X!TandemPipeline software suite are
available at http://pappso.inrae.fr/en/bioinfo/xtandempipeline/ . Most of the time, a new version is pub-
lished as source, and as binary install packages for MS-Windows (64-bit systems only).

1 http://proteowizard.sourceforge.net/ .

iv Software feature offerings and intended audience X!TandemPipeline 0.4.43

http://pappso.inrae.fr/en/travailler_avec_nous/contact/
http://pappso.inrae.fr/en/bioinfo/xtandempipeline/
http://proteowizard.sourceforge.net/


For GNU/Linux, binary packages are created locally (see http://pappso.inrae.fr/en/bioinfo/xtandem-

pipeline/download/ ) but are also built in the Debian2 autobuilders and are uploaded to the distribution
servers. These packages are available using the system's software management infrastructure (like using the De-
bian's apt  command, for example, or the graphical application).

The software and all the documentation are all provided under the Free Software license GNU General Public
License, Version 3, or later, at your option. For an in-depth study of the Free Software philosphy, the reader is
kindly urged to visit http://www.gnu.org/philosophy .

2 http://www.debian.org/

v Program and Documentation Availability and License X!TandemPipeline 0.4.43

http://pappso.inrae.fr/en/bioinfo/xtandempipeline/download/
http://pappso.inrae.fr/en/bioinfo/xtandempipeline/download/
http://www.gnu.org/philosophy
http://www.debian.org/


1 Generalities

In this chapter, I wish to introduce some general concepts around the X!TandemPipeline program, the reference
to be used to cite the software in publications, the building and installation procedures.

1.1 General concepts and terminologies
This section describes the general concepts at the basis of the analysis of proteomics data that one needs to grok
in order to properly assimilate the workings of the X!TandemPipeline software.

1.1.1 Bottom-up Proteomics or Top-down Proteomics?

Proteomics is a mass spectrometry-based eld of endeavour that is aimed at characterizing the “protein comple-
ment” of a given genome. The protein complement of a genome is the set of proteins that are expressed at a
given instant in the life of a cell, a tissue or an organ, for example. Characterizing that protein complement actu-
ally means identifiying the proteins expressed by a given living cell or tissue or organ. Optionally, if feasible, the
characterization of post-translational modifications might be desirable.

There are two main variants of protemics: “bottom-up” proteomics and “top-down” proteomics:

The rst variant—bottom-up proteomics—identifies proteins on the basis of the identification of all the
peptides obtained by rst digesting all the proteins of the sample using an enzyme of known specificity.
In this variant, the sample that is injected in the mass spectrometer is the resulting peptide mixture (rst
resolved by high performance liquid chromatography). The identification of the proteins contained in the
initial sample is performed in a number of steps that are actually the focus of X!TandemPipeline. Indeed
the X!TandemPipeline software is a bottom-up-oriented software program.

The second variant—top-down proteomics—identifies proteins on the The second variant identifies pro-
teins on the basis of intact proteins directly injected in the mass spectrometer. Of course, it might be nec-
essary to fragment the proteins in the mass spectrometer and to use the fragments to actually identify the
protein. However, the fact that the protein is rst detected and analyzed as one entity (and not as set of
peptides), allows for some very useful discoveries, like the identity and number of post-translational mod-
ifications, for example.

Note
At the moment, X!TandemPipeline does not handle top-down proteomics data: it is a bottom-up pro-
teomics software project.

1 General concepts and terminologies X!TandemPipeline 0.4.43



1.1.2 Typical cycle of a mass spectrometer data acquisition

Once the initial sample, containing all the proteins to identify, has been digested using a protease of known
cleavage specificity (trypsin, typically), the peptidic mixture (that might be highly complex) needs to be resolved
as much as possible using chromatography. In the vast majority of the proteomics experimental settings, the
chromatography setup is connected to the mass spectrometer so that when the gradient is developed, all the
peptides are immediately injected “on line” to the mass spectrum ion source.

The mass spectrometer runs an analysis cycle that can be summarized like the following:

Acquire a full scan mass spectrum of the whole set of ions at a given chromatography retention time. This
kind of mass spectrum is called a MS spectrum;

Enter a loop during which ions having the most intense signal are subjected in turn to collision-induced
dissociation (CID), that is, are fragmented by accelerating them against gas molecules in a fragmentation
cell. The mass spectra that are collected at each one of these fragmentation acquisitions are called MS/MS
spectra because they are obtained after two mass analysis events: the rst event is the measurement of the
intact peptide ion's m/z value (full scan mass spectrum) and the second event is the measurement of all
the obtained fragments' m/z values (MS/MS scan).

Each instrument records all the MS and MS/MS spectra in a raw data format le that is specific of the vendor.
Free Software developers cannot know the internal structure of the les. To use the mass spectrometric data, they
need to rely on a specific software that performs the conversion from the raw data format to an open data format
(mzML). That program is called msconvert, from the ProteoWizard project.

Note
Mass spectrometrists used to call ions that were analyzed in full scan mass spectra “parent ions”. They also
used to call fragment ions arising upon fragmentation of a parent ion “daughter ions”. This terminology
has been deprecated and has been replaced with “precursor ion” and “product ion”, respectively. In our
document, we thus use the new terminology.

1.1.3 Outline of an X!TandemPipeline working session

X!TandemPipeline loads mzXML- and mzML-formatted les and needs for its operations to have accesss to all
the MS and MS/MS spectra. Once data les have been loaded, X!TandemPipeline allows the user to perform the
following tasks, that will be detailed in later chapters:

2 Typical cycle of a mass spectrometer data acquisition X!TandemPipeline 0.4.43



Configure the X!Tandem database searching software (that is, the software, external to X!TandemPipeline
that actually performs the peptide-mass spectrum matches);

Run the X!Tandem software and load its results;

Display the results to the user in a way that they can be scrutinized and checked. The peptide identification
results serve as the basis for another processing step that is integrally performed by X!TandemPipeline: the
“protein inference”. That step aims at using the peptide identifications to actually craf a list of proteins
identities. The user is provided with various means to control that step in various ways.

1.2  Citing the X!TandemPipeline software.
Please, cite the software using the following citation: Olivier Langella, Benoît Valot, Thierry Balliau, Mélisande
Blein-Nicolas, Ludovic Bonhomme, and Michel Zivy (2016) X!TandemPipeline: A Tool to Manage Sequence
Redundancy for Protein Inference and Phosphosite Identification. J. Proteome Res. 2017, 16, 2, 494–503. https://
doi.org/10.1021/acs.jproteome.6b00632.

1.3 Installation of the software
The installation material is available at http://pappso.inrae.fr/en/bioinfo/xtandempipeline/down-

load/ .

1.3.1 Installation on MS Windows and macOS systems

The installation of the software is extremely easy on the MS-Windows and macOS platforms. In both cases, the
installation programs are standard and require no explanation.

1.3.2 Installation on Debian- and Ubuntu-based systems

The installation on Debian- and Ubuntu-based GNU/Linux platforms is also extremely easy (even more than
in the above situations). ; is indeed packaged and released in the official distribution repositories of these distri-
butions and the only command to run to install it is:

$  1 sudo apt install <package_name> RETURN

In the command above, the typical package_name is in the form xtpcpp  for the program package and xtpcpp-
doc  for the user manual package.

1 The prompt character might be % in some shells, like zsh.

3 Citing the X!TandemPipeline software. X!TandemPipeline 0.4.43

http://pappso.inrae.fr/en/bioinfo/xtandempipeline/download/
http://pappso.inrae.fr/en/bioinfo/xtandempipeline/download/


Once the package has been installed the program shows up in the Science menu. It can also be launched from
the shell using the following command:

$  xtpcpp RETURN

Tip
If the Debian system onto which the program is to be installed is older than testing, that is, older than
Buster (Debian 10), then using the AppImage program bundle might be a solution. See below for the
method to run mineXpert2 as an AppImage bundle.

1.3.3 Installation with an AppImage software bundle

The AppImage software bundle format is a format that allows one to easily run a software program on any GNU/
Linux-based distribution. From the http:/appimage.org/ :

The key idea of the AppImage format is one app = one le. Every AppImage contains an app
and all the les the app needs to run. In other words, each AppImage has no dependencies other
than what is included in the targeted base operating system(s).

—Simon Peter

There are AppImage software bundles for the various mineXpert2 versions that are available for download. As
of writing, the software bundle has been tested on Centos version 8.3.2011 and on Fedora version 22. These are
pretty old distribution versions and thus mineXpert2 should also run on more recent versions of these computing
platforms. The AppImage bundle of mineXpert2 was created on a rather current Debian version: the testing
Debian 11-to-be distribution.

In order to run the mineXpert2 software AppImage bundle, download the latest version (like mineX-
pert2-0.7.4-x86_64.AppImage ). Once the le has been downloaded to the desired directory, change to
that directory and change the permissions to make it executable:

$   chmod a+x mineXpert2-0.7.4-x86_64.AppImage RETURN

Finally, execute the le that has become a normal program:

$   ./mineXpert2-0.7.4-x86_64.AppImage RETURN

Tip
If the program complains about a locale not being found, please, modify the command line to read:

$   LC_ALL="C" ./mineXpert2-0.7.4-x86_64.AppImage RETURN

4 Installation with an AppImage software bundle X!TandemPipeline 0.4.43

http:/appimage.org/


1.4 Building the software from source

The mineXpert2 software build is under the control of the CMake build system. There are a number of depen-
dencies to install prior to trying to build the software, as described below.

1.4.1 The dependencies required to build X!TandemPipeline

The dependencies to be installed are listed here with package names matching the packages that are in De-
bian/Ubuntu. In other RPM-based software, most often the package names are similar, albeit with some slight
differences.

DEPENDENCIES

The build system

cmake

Conversion of svg  files to png  files

graphicsmagick-imagemagick-compat

For the parallel computations

libgomp1

For the isotopic cluster calculations

libisospec++-dev

For all the raw mass calculations like the data model, the mass spectral combinations…

libpappsomspp-dev, libpappsomspp-widget-dev

For all the plotting

libqcustomplot-dev

For the C++ objects (GUI and non-GUI)

qtbase5-dev, libqt5svg5-dev, qttools5-dev-tools, qtchooser

For the man page

docbook-to-man

For the documentation (optional, with -DMAKE_USER_MANUAL=1  as a flag to the call of cmake, see

below.)

daps, libjeuclid-core-java, libjeuclid-fop-java, docbook-mathml, libjs-jquery, libjs-highlight.js, libjs-math-
jax, fonts-mathjax, fonts-mathjax-extras, texlive-fonts-extra, fonts-ebgaramond-extra

5 Building the software from source X!TandemPipeline 0.4.43



1.4.2 Getting the source tarball

In the example below, the version of the software to be installed is 7.3.0 . Replace that version with any latest
version of interest, which can be looked for at https://gitlab.com/msxpertsuite/minexpert2/-/releases.

1.4.2.1  Using git

The rather convoluted command below only downloads the branch of interest. The whole git repos is very large…

$   git clone https://gitlab.com/msxpertsuite/minexpert2.git --branch mas-

ter/7.3.0-1 --single-branch minexpert2-7.3.0

1.4.2.2  Using wget to download the tarball

wget https://gitlab.com/msxpertsuite/minexpert2/-/archive/7.3.0/minex-

pert2-7.3.0.tar.gz

Untar the tarball, which creates the minexpert2-7.3.0  directory:

tar xvzf minexpert2-7.3.0.tar.gz

1.4.3 Building of the software

        Change directory:

        $  cd minexpert2-7.3.0

        Create a build directory:

        $  mkdir build

        Change directory:

        $  cd build

        Congure the build:

6 Getting the source tarball X!TandemPipeline 0.4.43



        $  cmake ../ -DCMAKE_BUILD_TYPE=Release

        Build the sofware:

        $  make

      

7 Building of the software X!TandemPipeline 0.4.43



2 Fundamentals in Bottom-up Proteomics

This chapter is an optional chapter which the reader might be referred to upon reading other part of this manual.

2.1 The Protein Biopolymer: Structure and Chemistry

This section introduces the basics in protein polymer chemistry. The way this topic is going to be covered is ad-
mittedly biased towards mass spectrometry and proteins. Moreover, the aim of this chapter is to provide the read-
er with the specialized words that will later be used to describe and explain the (inner) workings of the X!Tandem-
Pipeline program. This manual is not a “crash course” in biochemistry.

2.1.1 Protein Biosynthesis

Proteins are made of amino acids. There are twenty major amino acids in nature, and each protein is made of a
number of these amino acids. The combinations are infinite, providing enormous diversity to the protein realm.

A protein is a polar polymer: it has a lef end and a right end, and polymerization actually occurs from lef to
right (from N-terminus to C-terminus, see below). Figure 2.1, “Peptidic Bond Formation by Condensation”

shows that the chemical reaction at the basis of protein synthesis is a condensation. A protein is the result of
the condensation of amino acids with each other in an orderly polar fashion. A protein has a lef end, called
N-terminus; amino-terminal end and a right end, called C-terminus; carboxy-terminal end. The lef end is an
amino group (2HN–) corresponding to the non-reacted α-amino group of the very rst amino acid of the protein
sequence. Upon condensation of a new entering amino acid onto the rst N-terminal one, the amino group of
the entering amino acid reacts (nucleophilic attack) with the α-carboxyl group of the N-terminal amino acid. A
water molecule is released, and the formation of an amide bond between the two amino acids yields a dipeptide.
The right end of the dipeptide is a carboxyl group (–COOH) corresponding to the un-reacted α-carboxyl group
of the last amino acid to have been “polymerized in”.

The bond formed by condensation of two amino acids is an amide bond, also called—in protein chemistry—
a peptidic bond. The elongation of the protein is a simple repetition of the condensation reaction shown in Fig-

ure 2.1, “Peptidic Bond Formation by Condensation”, granted that the elongation always proceeds in the
described direction (a new monomer arrives to the right end of the elongating polymer, and elongation is done
from lef to right).

8 The Protein Biopolymer: Structure and Chemistry X!TandemPipeline 0.4.43



The lef end monomer R1 is condensed to the right end monomer R2 to yield a peptidic bond. A water molecule
is lost during the process.

FIGURE 2.1: PEPTIDIC BOND FORMATION BY CONDENSATION

Note
Now we should point at a protein chemistry-specific terminology issue: we have seen that a protein is a
polymer made of a number of monomers, called amino acids. In protein chemistry, there is a subtlety:
once an amino acid has been polymerized into a protein, it is no more called an amino acid, but is called
a residue instead. We may say that a residue is an amino acid less a water molecule.

From what we have seen until now, we may define a protein this way: —“A protein is a chain of residues linked
together in an orderly polar fashion, with the residues being numbered starting from 1 and ending at n, from the
first residue on the le end to the last one on the right end”. This definition is still partly inexact, however. Indeed,
from what is shown in Figure 2.2, “End Capping Chemistry of the Protein Polymer”, there is still a problem
with the extremities of the residual chain: what about the amino group on the lef end of a protein (the amino
group sits right onto the rst amino acid of the protein), and what about the carboxyl group of the right end
of a protein (the carboxyl group sits right onto the last amino acid of the protein)? Because these groups lie at
the extremities of the residual chain, they remained unreacted during the polymerization process. But because
we are simulating a residual chain using residues and not amino-acids, we still need to put the protein polymer
molecule in its “finished state”: by capping the lef end with a proton cap (so as to complete the amino group)
and the right end with a hydroxyl cap (so as to complete the carboxyl group). The capping of the residual chain
extremities ensures that the polymer is in its finished state, and that it cannot be elongated anymore. The proton
is the le cap of the protein polymer and the hydroxyl is the right cap of the protein polymer.

9 Protein Biosynthesis X!TandemPipeline 0.4.43



A protein is made of a chain of residues and of two caps. The lef cap is the N-terminal proton and the right cap
is the C-terminal hydroxyl. Altogether, the residual chain (enclosed here in the blue polygon) and both the H
and OH red-colored caps do form a complete protein polymer in its finished state.

FIGURE 2.2: END CAPPING CHEMISTRY OF THE PROTEIN POLYMER

Now comes the question of unambiguously defining the structure of a protein. It is commonly accepted that
the simple ordered sequence of each residue code in the protein, from lef to right, constitutes an unambiguous
description of the protein's primary structure (that is, its sequence). Of course, proteins have three-dimensional
structures, but this is of no interest to a program like massXpert, which is aimed at calculating masses of polymers.
To enunciate unambiguously the sequence of a protein, one would use a symbology like this:

Using the 3-letter code of the amino acids:
Ala Gly Trp Tyr Glu Gly Lys

Using the 1-letter code of the amino acids:
A G W Y E G K
Alanine is thus the residue 1 and Lysine is the last residue (n = 7)

2.1.2 Protein Disrupting Chemistries

The “polymer chain disrupting chemistry” was mentioned earlier as a complex subject that was of enormous
importance to the mass spectrometrist. This is why that subject will be treated in a pretty thorough manner. First
of all it should be noted that a chemical modification of a polymer does not necessarily involve the perturbation
of the chain structure of the polymer. Here, however, we are concerned specifically with a number of chemical
modifications that yield a polymer chain perturbation; cleavages and fragmentations:

Cleavages.  These are chemical processes by which a cleaving agent will act directly on the protein residual
chain making it fall into at least two separated pieces (the peptides).

Fragmentations.  These are chemical processes by which the polymer structure is disrupted into separated
pieces (the product ions, or fragments) mainly because of energy-dependent electron doublet rearrangements
leading to bond breakage.

10 Protein Disrupting Chemistries X!TandemPipeline 0.4.43



2.1.2.1 Protein Cleavage

Upon cleavage of a protein, the cleaving molecule reacts with it, and by doing so directly or indirectly “dissolves”
an inter-residue bond. A protein cleavage always occurs in such a way as to generate a set of true finished polymer-
ization state “proteins” (smaller in size than the parent polymer, evidently, which is why they are called oligopep-
tides, or peptides). Indeed, let us take the example shown in Figure 2.3, “Protein Cleavage by Water and

Cyanogen Bromide”, where a tripeptide (a very little protein, containing a methionyl residue at position 2)
is submitted either to a water-mediated cleavage (hydrolysis, upper panel) or to a cyanogen bromide-mediated
cleavage (lower panel). The two cases presented in this figure are similar in some respects and different in others:

In the rst case the molecule that is responsible for the cleavage is water, while in the second case it is
cyanogen bromide;

In both cases the bond that is cleaved is the inter-monomer bond (in protein chemistry this is a peptidic
bond);

In both cases the Oligomer 2 has the same structure;

The structures of the Oligomer 1 species differ, when produced using water or cyanogen bromide as the
cleaving molecule.

The difference between hydrolysis and cyanogen bromide cleavage is in the generation of the Oligomer 1 species:
the cyanogen bromide cleavage has a side effect of generating a homoseryl residue at the C-terminus of Oligomer 1,
while hydrolysis generates a genuine methionyl residue. This is because water reverses in a very symmetrical man-
ner what polymerization did (hydrolysis is the converse of condensation), while cyanogen bromide did some
chemical modification onto the generated Oligomer 1 species.

11 Protein Disrupting Chemistries X!TandemPipeline 0.4.43



A tripeptide is cleaved at position 1 either by hydrolysis (top) or by cyanogen bromide (bottom). Cyanogen bro-
mide cleaves specifically on the right of a methionine monomer. Upon cleavage, the methionyl monomer gets
converted into homoserine by the cyanogen bromide reagent

FIGURE 2.3: PROTEIN CLEAVAGE BY WATER AND CYANOGEN BROMIDE

Nonetheless, the reader might have noted that—interestingly—all the four oligomers do effectively have their lef
cap (the proton, making the N-terminal amino group) and their right cap (the hydroxyl, making the C-terminal
carboxyl group). This means that in both water- and cyanogen bromide-mediated cleavages, all the generated
oligomers are indeed true polymers in the sense that: 1) they are a chain of residues (modified or not) and 2) they
are correctly capped (i.e. they are polymers in their finished polymerization state). This is important because it is
the basis on which we shall make the difference between a cleavage process and a fragmentation process. Thus,
our definition of a peptide might be: a peptide is a protein (of at least one residue) in its finished polymerization
state that was generated upon cleavage of a longer protein. Of course, when we use the term “protein”, above, we
mean “protein polymer”, irrespective of its size.

12 Protein Disrupting Chemistries X!TandemPipeline 0.4.43



When the protein cleavage reaction precisely reverses the reaction that was performed for the same protein's
biosynthesis, there is no special difficulty. But when the cleavage reaction modifies the substrate, then this should
be carefully taken into account when using X!TandemPipeline. This is true for any chemical modification that
happens onto a protein.

Well, all this sounds reasonable. But what about the “normal” case, when the cleavage is done using water? Noth-
ing special: the mass of the oligomer is calculated by summing the mass of each monomer in the oligomer (since
the monomers are not modified, this is easily done) and the masses corresponding to the lef and right caps (these
are defined in the polymer chemistry definition; in our present case it would be a proton on the lef end, and a
hydroxyl on the right end). In this way, the oligomer complies with its definition, which states that it is a faithful
polymer made of monomers and that it is in its finished state.

Yes, but then how should one calculate the mass of the modified oligomer, like our Oligomer 1 in the case of
the cyanogen bromide-mediated cleavage? Simple enough: in a rst step it does exactly the same way as for the
unmodified oligomer. Next, each oligomer is checked for presence or absence of a methionine residue on its right
end. If a methionine is found, the mass corresponding to the “-C1H2S1+O1” chemical reaction is applied. And
that's it.

2.1.2.2 Protein Fragmentation

In a fragmentation process, the bond that is broken does not necessarily yield smaller-sized “proteins” because
fragmentation does not necessarily break the inter-residue bond the same way that the hydrolysis does. Indeed,
fragmentations are of-times high energy chemical processes that can affect peptidic bonds at different locations,
not necessarily between the CO-NH bond of the peptidic bond. This is one of the reasons why fragmentations
do differ from cleavages.

Another peculiarity of fragmentations, compared with cleavages, is the fact that there is no cleaving molecule
starting the process, like water or cyanogen bromide, for example. Indeed, in the gas phase, the peptidic ions are
“isolated”: that is, very far one from each other. A fragmentation process is often initiated by an intra molecular
electron doublet rearragement that propagates more or less in the polymer structure to eventually break it. Frag-
mentations are mainly a gas phase process, not some reaction that happens in solution as a result of putting in
contact the polymer and some reagent. It is precisely because no cleaving molecule is involved in the fragmenta-
tion process that the obtained fragments are not necessarily capped like a normal polymer should be; and this is
another really important difference between cleavage and fragmentation. The following examples should illus-
trate these concepts.

13 Protein Disrupting Chemistries X!TandemPipeline 0.4.43



Tip
For the sake of completeness of this section, it must be noted that it is possible to have other “chemi-
cal/physical entities” intervene during the gas phase fragmentation process by enacting a chemical reac-
tion, be these entities ions, electrons or photons. In bottom-up proteomics, the intervening molecules
are gas molecules (nitrogen, most often, or helium) that act as physical entities imposing collisions to
the peptidic ions with the effect that the ions acquire internal energy, eventually leading to dissociation
(CID, for “collisionally-activated dissociation”).

There is a pretty important number of different kinds of fragments that can be generated upon fragmentation
of peptides. We are going to detail the most common ones.

An hexapeptide is fragmented in the seven most widely encountered manners, such as to generate product ions
of the a, b, c, x, y, z series and also immonium ions. The figure illustrates the position of the bond dissociation
for each kind of fragment (exemplified using the case of the smallest fragment possible) and the mass calculation
method is described for each fragment kind; consider that each fragment bears only one positive charge.

FIGURE 2.4: PROTEIN FRAGMENTATION PATTERNS MOST WIDELY ENCOUNTERED

14 Protein Disrupting Chemistries X!TandemPipeline 0.4.43



As can be seen from Figure 2.4, “Protein fragmentation patterns most widely encountered”, the frag-
mentations do generate fragments of three categories: the ones that include the lef end of the precursor polymer
(a, b, c), the ones that include the right end of the precursor polymer (x, y, z), and finally the special case in which
the fragment is an internal fragment, like the immonium ions. When looking at the fragmentations described in
the figure, it becomes immediately clear why a fragmentation cannot be mistaken for a cleavage: the ionization
of the fragment is not necessarily due to the captation of a proton by the fragment. Furthermore, we can also see
that a fragmentation is not a cleavage because the fragment that is generated is absolutely not necessarily what we
call a polymer, in the sense that the fragment might not be capped the same way as the precursor protein/peptide
is (that is, the fragment is not in its finished polymerizaton state).

By looking at Figure 2.4, “Protein fragmentation patterns most widely encountered”, the reader should
have noticed that the fragment naming scheme takes into consideration the fact that the fragment bears the N-
terminal or C-terminal end of the precursor peptide (or none, also). Indeed, the numbering of fragments holding
the N-terminal end of the precursor polymer sequence begins at the lef end, and for fragments that hold the C-
terminal end, at the right end. Thus the third fragment of series a (a3) would involve monomers [1→] and the
third fragment of series y (y3) would involve monomers [6→] (see arrows in the figure).

2.2 General Overview of Bottom-up Proteomics

Bottom-up proteomics is a eld of endeavour where the ultimate goal is to identify the greatest number of pro-
teins in a given sample. This goal might also, depending on the project at hand, be doubled with another goal:
characterize at the nest level possible the nature and the position of post-translational/chemical modifications
beared by the proteins.

To achieve the best results, proteomics has developed over the years a number of methods and techniques that,
taken together, have allowed scientists to obtain impressive results of protein identification on pretty complex
samples. These are listed below:

15 General Overview of Bottom-up Proteomics X!TandemPipeline 0.4.43



Mass spectrometers: The development of mass spectrometers of ever-greater resolution power has allowed
to attain at ever-lower false discovery rates over the years. In particular, the development of the Orbitrap
analyzers, along with the huge improvements of the time-of-ight (TOF) mass analyzer technology, have
strongly increased the identification results reliability by allowing the downstream data processing step to
be more stringent in the protein identification task (see below);

Chromatography: The development of highly resolutive chromatography resins along with the elaboration
of hardware (columns, chromatography setups) that yields sensitivity improvements have had their share
in the way proteomics has evolved over the years;

Bioinformatics: The development and refinement of software that can cope with extremely large data sets
(think metaproteomics) is one major eld that enabled significant advances in proteomics. Also, refine-
ment of algorithms related to the simulation of isotopic clusters and comparison with experimental data
have had their part. Likewise so for algorithms that detect the charge of ions based on the analysis of the
isotopic cluster peaks. Being able to single out without error the monoisotopic peak of an isotopic cluster
(whater the ion charge or m/z ratio) is a big part of the successfully tackled challenges at the root of suc-
cessful proteomics data processing.

In this section, we will review the bioinformatics-based mass spectrometric data processing, as it is the core subject
of this user manual. In particular, we will provide an outline of how the major software packages on the market
perform protein identification on the basis of mass spectrometric analyses of biological samples.

This section will outline in not-so-rough terms how bottom-up proteomics works, from the protein sample to
the protein identification list. The workflow comprises two sequential processes:

From the protein to the sequences of the peptides: this initial part of the workflow is somehow doubled by
having two parallel processes replicating it:

In silico process;

Experimental process.

These two processes are described in Figure 2.5, “Theoretical and experimental parallel data-pro-

ducing processes”.

16 General Overview of Bottom-up Proteomics X!TandemPipeline 0.4.43



The digestion of the proteins, the analysis of the m/z of the peptides and the sequencing of the peptides
are processes that exist both in silico and experimentally. This figure shows how the processes somehow
mirror each other in the virtual and real contexts.

FIGURE 2.5: THEORETICAL AND EXPERIMENTAL PARALLEL DATA-PRODUCING PROCESSES

Database searching using experimental data: this last part of the workflow is entirely based on bioinfor-
matics software and involves the search for peptide vs mass spectrum matches and then a process called pro-
tein inference (see Section 2.2.5, “Matching Fragmentation Spectra with Theoretical Spectra”).

2.2.1 The First Step: Digestion of the Sample's Proteins

The very rst step in the bottom-up protemics workflow is to digest all the proteins in the initial biological sample
with a site-specific endoprotease: typically tryspin.

The sample is subjected to proteolysis with all its proteins unresolved. This produces a highly complex mixture
of peptides, each having a constant characteristic: each peptide has one predictable end (unless it is either the
protein's N-terminal or the C-terminal peptide, as detailed below), either N-terminal or C-terminal:

17 The First Step: Digestion of the Sample's Proteins X!TandemPipeline 0.4.43



Predictable N-terminus: when the protease cuts at the N-terminal end of the target residue. For example,
EndAspN cleaves lef of Asp residues, thus producing peptides that always have Asp as their N-terminal
residue. The only exception is when the peptide is the protein's N-terminal peptide and the rst residue
is not Asp);

Predictable C-terminus: when the protease cuts at the C-terminal end of the target residue. For example,
the most used enzyme, trypsin, cuts right of the basic residues Lys and Arg. The generated peptides thus
necessarily end with one of these two residues. The only exception is when the peptide is the protein's C-
terminal peptide and the last residue is not Lys nor Arg.

Tip
One interesting feature of trypsinolyis is that it generates peptides that—for their major part—
will most probably be protonated twice: on their N-terminal end (the primary NH2 amine group 1

and on the basic residual chain of the basic residue found at their C-terminal position (the ɛ-amine
group for Lys and the guanidium group for Arg). Upon fragmentation of the peptide's precursor
ion, both the lef hand side fragment and the right hand side fragment will bear a proton and will
thus be detected, thus potentially providing a better coverage of the peptide's sequence during the
MS/MS experiment.

2.2.2 Chromatographic Separation of the Peptidic Mixture

One major analytic step in bottom-up proteomics is the separation of the peptides obtained by endoproteoly-
sis of all the proteins in the sample. Indeed, analyzing all the peptides in one single injection without any pri-
or chromatographic separation would yield catastrophic results, similar to having injected nothing in the mass
spectrometer.

The typical method for resolving peptides is by separating them on a chromatographic column functionalized
with a hydrophobic group (for peptides, that would be a C18 reversed phase column).

The chromatographic gradient that will elute the peptides progressively according to their increasing hydropho-
bicity will be developed over the 5–95 % of acetonitrile (a non-protic organic solvent).

Tip
Using acetonitrile as the non-protic organic solvent has the huge benefit of not injecting protons inside
the mass spectrometer as the chromatographic gradient develops.

1 If not either converted to an amide group by acetylation or formylation or cyclised.

18 Chromatographic Separation of the Peptidic Mixture X!TandemPipeline 0.4.43



The eluate of the chromatographic column is directly injected into the mass spectrometer's source. The role of
the mass spectrometer's source device is to ensure that the analytes are desolvated and ionized upon their entering
in the core part of the mass spectrometer. Most often, that source is an electrospray source that is fed a liquid
(typically, the eluate from the column). The source is designed to evaporate the solvent (analyte desolvation) and
—having an electric potential applied to it— to help ionize the analytes (often the peptides are already ionized
in solution, prior to desolvation). The electrically charged analytes in the gas phase are thus ions, the m/z (mass-
to-charge) ratio of which can be measured by the mass spectrometer analyzer.

Warning
There are two main sources used in the mass-spectrometry-for-biology specialty: the matrix-assisted laser
desorption ionization (MALDI) source and the electrospray ionization (ESI) source. One important dif-
ference between the two is that the MALDI process mostly produces mono-charged ions ([M+H]+),
while the ESI process mostly produces multi-charged ions ([M+nH]n+). This has huge implications in
the mass data analysis.

The source that is mainly used in bottom-up proteomics is the ESI source.

2.2.3 Mass Spectrometric Analysis of the Peptides

Upon elution of the chromatographic column, the peptides are desolvated, ionized and drawn into the mass
spectrometer using an electrical eld. Once they have entered the mass spectrometer they are analyzed in the mass
analyzer of the instrument.

Note
There are a variety of mass analyzers commonly used in bottom-up proteomics. In fact, one single in-
strument might have as many as 4 or 5 mass analyzers. However, not all the analyzers in the instrument
are responsible for the m/z measurement.

Sometimes, during the whole cycle of the analysis, two different mass analyzers are used at different steps
of the cycle: one analyzer selects the ion for fragmentation and another analyzer measures the m/z value
of the fragments.

In bottom-up proteomics, two different kinds of mass spectrometric data are required—ideally, for each peptide
eluted from the column— in order to effectively identify the proteins in the initial sample:

19 Mass Spectrometric Analysis of the Peptides X!TandemPipeline 0.4.43



The mass-to-charge ratio value (m/z) of the peptide ion;

The m/z values of the fragments (the product ions) of the peptidic precursor ion that has undergone an
MS/MS gas phase fragmentation2.

These two kinds of data are necessary because the protein identification process is based on searches in protein
databases using the precursion ions' m/z value and the m/z values of that ion's fragments when it is fragmented.
The way the protein databases are used as the substrate of these searches is described in the next section.

2.2.4 The Protein Databases and Their Use

The previous section ended on the idea that the protein identification process, that is based on the analysis of
all the peptides of a peptidic mixture resulting from the endoproteolysis of a sample containing many proteins,
requires searches into protein databases.

A bottom-up proteomics experiment typically needs at least one protein database: a database listing all the known
proteins of the organism from which the initial sample of proteins was prepared. That organism might be a
bacterium, a Eucaryote, like a fungus, a protist, a plant, a mammalian… Optional databases might be used, like
protein databases listing all known protein contaminants, for example.

The protein databases are les in the following FASTA format:

      >GRMZM2G009506_P01 NP_001149383 serine/threonine-protein kinase receptor

      MEEQHMAGPPYRYRLQHRRLMDIAPASASDDDSGHHGSNGMAIMVSILVVVIVCTLFYCV

      YCWRWRKRNAVRRAQIERLRPMSSSDLPLMDLSSIHEATNSFSKENKLGEGGFGPVYRGV

      MGGGAEIAVKRLSARSRQGAAEFRNEVELIAKLQHRNLVRLLGCCVERDEKMLVYEYLPN

      RSLDSFLFDSRKSGQLDWKTRQSIVLGIARGMLYLHEDSCLKVIHRDLKASNVLLDNRMN

      PKISDFGMAKIFEEEGNEPNTGPVVGTYGYMAPEYAMEGVFSVKSDVFSFGVLVLEILSG

      QRNGSMYLQEHQHTLIQDAWKLWNEDRAAEFMDAALAGSYPRDEAWRCFHVGLLCVQESP

      DLRPTMSSVVLMLISDQTAQQMPAPAQPPLFASSRLGRKASASDLSLAMKTETTKTQSVN

      EVSISMMEPRFWADPGTSNGAATSHPATGACKKRGGQGGDRNVKDGLAARTPTHQPVARW

      HHDRRIVD

    

This format is really simple, because it only contains three information pieces, grouped in as many stanzas as
there are proteins in the database:

2 Most often, that fragmentation step is performed using collisionally-activated dissociation (CID). In this process, the peptidic precursor ion
is rst isolated in the gas phase on the basis of its m/z value and then is accelerated against a gas “fog” inside of the collision cell of the instrument.
The ion hits gas molecules multiple times, acquires a lot of energy and finally breaks.

20 The Protein Databases and Their Use X!TandemPipeline 0.4.43



The unique protein's accession id in the database ( GRMZM2G009506_P01 ) that comes right after the '>'
prompt that signals a new protein stanza;

The protein description ( NP_001149383 serine/threonine-protein kinase receptor )
that provides some functional data bits for the protein at hand;

The protein sequence (the rest of the stanza above).

The rst (id) and second (description) information bits are used in various places in the X!TandemPipeline pro-
gram.

The protein databases are used by the protein identification software as the very rst step in a bottom-up pro-
teomics data analysis process: the proteins in the database are digested in silico in order to produce a list of pep-
tides that retain a connection to the protein from which they were generated. For each one of all these peptides,
the following data bits are computed (Figure 2.5, “Theoretical and experimental parallel data-produc-

ing processes”, top panel):

sequence: The peptide's sequence;

m/z value: The peptide's m/z value, often computed for the mono-protonated ([M+H]+) ion;

MS/MS spectrum: The peptide's fragmentation spectrum is nothing but an array of m/z values corre-
sponding to the set of calculated fragments (of the b and y ion series). The m/z values of the product ions
are crucial for the database search algorithm;

The next step is the establishment of a relation between the experimental MS/MS data acquired by the instru-
ment and the theoretical MS/MS spectra computed from the protein sequences in the database. This next step
is described in detail in the next sections.

2.2.5 Matching Fragmentation Spectra with Theoretical Spectra

This section is about how the protein database searching software sets a relation between the experimental mass
data and the theoretical mass data originating in the protein database. The elementary relation is between a giv-
en experimental MS/MS mass spectrum of a peptide's ion at a given m/z value and its theoretical counterpart
from the database: when these two MS/MS spectra match at a sufficiently convincing level, then a “peptide vs
mass spectrum match” was achieved (abbreviated name: PSM). The computing of a PSM is described in detail in
Figure 2.6, “The steps leading to a scored peptide vs mass spectrum match (PSM)”.

We have seen in Section 2.2.4, “The Protein Databases and Their Use”, that two somehow similar processes
are at the basis of the preparation of the data for the subsequent database searches. These processes were described
in Figure 2.5, “Theoretical and experimental parallel data-producing processes”.

21 Matching Fragmentation Spectra with Theoretical Spectra X!TandemPipeline 0.4.43



On the one hand (top panel, violet), the protein database is processed to digest in silico every protein it contains
into a list of peptides. For each peptide arising from the digestion of a protein, the following data elements are
recorded:

The peptide's m/z value is computed. The association between that m/z value, the peptide and its origi-
nating protein is maintained;

The peptide is fragmented into a list of peptidic fragments (product ions' m/z values, that is, the MS/
MS spectrum; typically b and y ions series). The connection with the earlier data elements above is also
maintainted.

It is thus easy to determine the filiation between any given MS/MS theoretical mass spectrum, the precursor ion's
m/z value, the peptidic sequence and, finally, the protein whence that peptide came.

On the other hand (bottom panel, green), the mass spectrometric data acquisition yields a huge set of the fol-
lowing pairs of data elements that are recorded over time:

The m/z value of the peptidic precursor ion undergoing fragmentation (keeping a connection with the
retention time at which it is recorded);

The list of peptidic fragments (product ions' m/z values, that is, the MS/MS spectrum). The connection
with the precursor ions' m/z value and with the retention time is maintained.

22 Matching Fragmentation Spectra with Theoretical Spectra X!TandemPipeline 0.4.43



The process starts with a full scan mass spectrum from which the mass spectrometer selects one precursor ion at a
definite m/z value. That ion is fragmented and thus generates a MS/MS spectrum. During the data exploration,
the software extracts from the database all the peptides having the same m/z value as that of the fragmented
ion (top right, violet background). Next, the experimental MS/MS spectrum is compared in turn to each one
of the MS/MS spectra of the extracted peptide list. A HyperScore is computed at each comparison. Because
X!TandemPipeline uses X!Tandem as its preferred protein database search engine, the HyperScore calculation,
as performed by X!Tandem, is described.
FIGURE 2.6: THE STEPS LEADING TO A SCORED PEPTIDE VS MASS SPECTRUM MATCH (PSM)

23 Matching Fragmentation Spectra with Theoretical Spectra X!TandemPipeline 0.4.43



Once the acquisition of the experimental data is complete, the analysis of these data involves going through all
the fragmentation data of the acquisition and performing these steps for each MS/MS spectrum (as evidenced
in Figure 2.6, “The steps leading to a scored peptide vs mass spectrum match (PSM)”:

Get the precursor ion's m/z value;

Compute the match m/z range. For example, if the software is configured with a m/z tolerance for the
m/z matches set to 0.02 and the precursor ion's m/z value is 1254.25, then the match m/z range would be
[1254.23–1254.27];

Construct a list of all the peptides in the database that have their m/z value contained in the match m/z
range;

For each peptide in the list returned from the database, compare its theoretical MS/MS spectrum with the
experimental one. Compute a HyperScore for comparison.

2.2.5.1 Computation of the PSM HyperScore

Of course, it is extremely rare that an experimental MS/MS spectrum matches fragment-by-fragment an identical
theoretical spectrum. Most often, some theoretical product ions (MS/MS spectrum peaks) are missing from the
experimental fragmentation spectrum. Also, there will almost certainly be dozens (if not hundreds) of peptides
having a m/z value in the searched m/z range. Most certainly, the vast majority of these peptides are not of the
right sequence (that is, do not have their MS/MS theoretical mass spectrum matching the experimental one). To
make without any human scrutiny of the matches, it is necessary to compute a score that somehow assesses the
extent to which both the experimental and theoretical MS/MS spectra match. That score, in X!Tandem, is called
HyperScore and is described at the bottom of the figure.

The HyperScore computation process is relatively straightforward. First of, it is necessary to stress the fact that
a HyperScore is computed each time an experimental MS/MS spectrum is compared to a theoretical (calculated)
MS/MS spectrum (see m/zexp vs m/zcalc match list in Figure 2.6, “The steps leading to a scored peptide vs

mass spectrum match (PSM)”).

In the example, three peptides from the database have their m/z value matching the searched m/z range (the m/z
value of the precursor ion with accounting for the tolerance). So, the program checks the similarity between the
experimental MS/MS spectrum and each one of the three theoretical ones. Each similarity test is associated to
a HyperScore value.

The HyperScore is computed by summing—for each tested fragment peak in the theoretical MS/MS spectrum—
the product of two variables described below. Once that sum is computed, it is compounded by two factorial
numbers also described below:

24 Matching Fragmentation Spectra with Theoretical Spectra X!TandemPipeline 0.4.43



Ii: the intensity of the matching mass peak in the experimental MS/MS spectrum (if found);

Pi: the ponderation factor of the matching mass peak in the experimental MS/MS spectrum. That variable
can take a number of values, depending on the presence or not of this fragment peak in the experimental
MS/MS spectrum (if not found, then Pi is naught and the peak is disregarded entirely). There are other
values greater than naught, accounting for the physico-chemical properties of the peptidic bond that was
cleaved to obtain that fragment (presence of proline will lower the P value, for example).
Intuitively, the HyperScore will end up larger if there are a lot of fragment peaks in the theoretical MS/
MS spectrum that are matched with experimental ones (each Pi value compounded by the Ii value is being
summed into the HyperScore final value).

Nb!: the sum computed above is then compounded by the factorial of the number of ions of the b ion
series that are found in the experimental MS/MS spectrum;

Ny!: the product computed at the previous step is then compounded by factorial of the number of ions
of the y ion series that are found in the experimental MS/MS spectrum.
This last compounding operation terminates the computation of the HyperScore value.

It is apparent now that the HyperScore value will tend to be greater if there are numerous fragment peaks in the
theoretical MS/MS spectrum that are matched by fragment peaks in the experimental MS/MS spectrum. Also,
the score value is incremented if the intensity of the matching peaks is greater and if the number of matching
peaks of the two b and y ions series is greater.

This, however, cannot be all of it, because the HyperScore does not really answers the question: “what are—if
any—, of all the PSMs found for a given experimental MS/MS spectrum, the one (or ones) that we can faithfully
tell as true match(es)?”. To answer that question, some more computational steps need to be carried over, that
should lead to a numerical value that is truly indicative of the confidence we may have that a given PSM is a real
match. In X!Tandem, that numerical value is called expectation value (abbreviation: E-value). We describe the
whole process of its computation below.

2.2.5.2 Computation of the Peptide Expectation Value (E-value)

First of all, it needs stating that we describe the peptide E-value, not the protein E-value. A peptide E-value is
obtained for a single experimental MS/MS spectrum. It is computed by looking into the HyperScore values
obtained for all the MS/MS spectra comparisons described at the previous section. The HyperScore values (for
example, the three values denoted H-S xxx, H-S yyy and H-S zzz in Figure 2.6, “The steps leading to a scored

peptide vs mass spectrum match (PSM)”) are used to perform the E-value computation. In the following text,
we'll assume that there are many more PSMs than these three, for a given experimental MS/MS spectrum (which
is actually the reality, with hundreds of peptides in the database that match a given searched m/z range). As
illustrated in Figure 2.7, “Computation of a peptidic expectation value (E-value)”, a histogram is crafted

25 Matching Fragmentation Spectra with Theoretical Spectra X!TandemPipeline 0.4.43



plotting the count of MS/MS spectral pair comparisons (let us call them “wannabe PSMs”) against a number of
HyperScore bins. This histogram is a good representation of the distribution of the HyperScore values among the
various peptides in the m/z value-matching list (see previous section). In this example, the very best HyperScore
value is 82 and the number of PSMs having that score is obviously very low! Instead, the distribution clearly
shows that there are a vast majority of wannabe PSMs that have very low HyperScore values and that will not
ultimately be considered as real PSMs.

In order to be able to use the distribution pattern further, the second half of the distribution's main peak is
replotted by computing the natural logarithm of the count of MS/MS spectral pair comparisons, still against the
HyperScore value bins. The new plot is easily fitted into a line, of which the equation is computed.

The best HyperScore value (82, in the example) is then used in the line equation to compute the corresponding
ordinate (the natural logarithm of the PSMs count having that HyperScore). That value (-8.4, in the example)
corresponds to the natural logarithm of the expectation value (E-value). By using the exponential function, the
E-value is thus computed to be 0.00022, which a pretty low number. Since the E-value somehow gives an idea
that a given PSM was obtained by chance, the very small obtained result shows that the match almost certainly
was a faithful one.

Note
The expectation value is defined as the probability that the peptide sequence would match an experi-
mental tandem mass spectrum by chance, if the trial is repeated many times. For example, if the E-value
is found to be 1, then that means that the match can occur by chance or not with an equal probability.
Instead, if the E-value is found to be 0.01, then that means that there is one event over 100 trials that the
match has occurred by chance.

The smaller the E-value, the more confidence one has that the match is correct and that the PSM is a
faithful one.

26 Matching Fragmentation Spectra with Theoretical Spectra X!TandemPipeline 0.4.43



For each experimental MS/MS spectrum, gather all the peptides in the database that have a m/z value matching
the precursor ion's m/z value. For each peptide sequence, compute the HyperScore. With all the HyperScore
values, go on with the calculation of the expectation value for the peptide set. The peptidic E-value should be
the smallest possible, as it is an indication of the possibility that the match between the experimental MS/MS
spectrum and the theoretical mass spectrum occurred by chance.

FIGURE 2.7: COMPUTATION OF A PEPTIDIC EXPECTATION VALUE (E-VALUE)

27 Matching Fragmentation Spectra with Theoretical Spectra X!TandemPipeline 0.4.43



Tip
The user configures the software to only consider PSMs if their peptidic E-value is below a given thresh-
old. Typically, that threshold is given a value of 0.05 (Figure 3.5, “Configuration of the loading of

the identification results”).

When a reliable match between an experimental MS/MS spectrum and a theoretical MS/MS spectrum is found
(that is, a true PSM), the software reports the following set of data elements:

m/z: the m/z value of the precursor peptidic ion that underwent fragmentation;

sequence: the sequence of the peptide that was matched in the present PSM;

protein name: the protein accession number that produced the matched peptide upon enzymatic digestion
of the sample;

E-value: the peptide expectation value, as described above.

2.2.5.3 Computation of the Protein Expectation Value (E-value)

The last step in the computation of values that help the software and the user determine if identifications are
faithful (for peptides and for proteins) is the computation of the protein expected value. This value is very easily
computed: it is the product of the E-values of all the peptides that participated in the identification of the protein.

By necessity, then, the protein E-value will be less than the threshold peptide E-value (since that last value is
below 1). By default, the protein E-value is set to 0.01 (Figure 3.5, “Configuration of the loading of the

identification results”).

2.2.5.4 Protein Inference: from PSMs to Protein Identities

One remaining critical question is: “— How is the list of protein identifications returned by the database searching
software verified and modified?” Indeed, there are a number of situation where the proteomics data user may
want to tweak the identification results. But also, the protein identification list returned by the database software
may not be as perfect as one would expect. Bioinformaticians working in proteomics have come up with a num-
ber of algorithms to better the reliability of the identification results returned by database searching software.

In X!TandemPipeline we use an algorithm that is impinged on the concept of parcimony. That algorithm is
detailed in an article describing X!TandemPipeline that was published in The Journal of Proteome Research in
2017 by Olivier Langella and Colleagues. The general concepts are presented here for the sake of completeness
of this user manual.

28 Matching Fragmentation Spectra with Theoretical Spectra X!TandemPipeline 0.4.43



The process of establishing a consolidated protein identity list from the results reported by the database searching
software is illustrated (see text).

FIGURE 2.8: PROTEIN INFERENCE: CONSTRUCTING A CONSOLIDATED PROTEIN IDENTIFICATIONS LIST

The protein inference process, depicted in Figure 2.8, “Protein inference: constructing a consolidated

protein identifications list”, is a multi-step one. The starting point is the huge list of PSMs that are reported
by the database searching software. These PSMs are displayed in the figure as the two columns on the lef hand
side: one experimental MS/MS spectrum (Spectrum number) has provided a convincing PSM and thus allowed
the identification of a peptide (MS/MS 1 → Pep 1, Peptide number). Of course, a given peptide (Pep 1) might have
allowed the identification of multiple proteins (for example, homologous proteins that share the same peptidic
sequence). Thus, Pep 1 is found in proteins A, B and C (column Identified proteins). The structure of the identi-
fied proteins can thus be partially reconstructed, and that is shown in column Identified proteins with identifying
peptides. All the other PSMs are listed below that rst one.

The general concept of the algorithm is that, by going through all the PSM data it is possible to check if some
form of degraded redundancy allows pruning of some proteins from the list. This pruning of of some proteins
is meant to increase the confidence that the identifications are reliable. That might be at the cost of having a
smaller number of identified proteins, but with an improved false discovery rate (that is, a reduced FDR). As
described below, the pruning of of proteins from the protien identifications list occurs at two different steps
in the inference process.

The rst step is the creation of sub-groups of the identified proteins. In this step, all the proteins that could
be identified thanks to the exactly same set of peptides are gathered into a sub-group. In the example, the sub-
group that contains more than one protein happens to be sub-group 4. Note how protein F in this sub-group
is identified by a set of three peptides. This is two peptides less than the number of peptides that identified the
other two proteins (D and E) in the sub-group. The principle of parcimony allows thus to remove Protein F as
that protein is not justified per se, that is, it is unnecessary to explain the presence of the three peptides.

The second step is the creation of groups that gather all the sub-groups that share at least one peptide. Thus,
group 1 contains sub-groups 1, 2 and 3, while group 2 contains the sub-group 4. According to exactly the same
philosophy as for the previous step, the sub-groups that contain proteins identified only by peptides also shared
by proteins present in other sub-groups are pruned of.

29 Matching Fragmentation Spectra with Theoretical Spectra X!TandemPipeline 0.4.43



The whole process described here is dubbed “protein grouping” in the X!TandemPipeline language. The ouptput
of this protein grouping process is displayed in the protein identification window, to be described below.

2.2.6 Phospho-Proteomics

An analogous algorithm as the one used for protein inference is at play when X!TandemPipeline is handling
phospho-proteomics data. That algorithm is described below and in Figure 2.9, “Phospho-site inference: con-

structing a consolidated phospho-site list”.

The process of establishing a consolidated phospho-site list from the results reported by the database searching
software is illustrated (see text).

FIGURE 2.9: PHOSPHO-SITE INFERENCE: CONSTRUCTING A CONSOLIDATED PHOSPHO-SITE LIST

The phospho-island inference process, depicted in Figure  2.9, “Phospho-site inference: constructing a

consolidated phospho-site list”, is a multi-step one, most similarly to what was described in Section 2.2.5.4,

“Protein Inference: from PSMs to Protein Identities”. The starting point is the list of peptides that were
identified and determined to bear one or more phospho-sites (thus called phospho-peptides; see the red vertical
bar in the figure). Two difficulties here are, on the one hand, the fact that phospho-sites may be shared by more
than one peptide and, on the other hand, the fact that more than one phospho-site might be determined on the
same peptide. These are the reasons that the concept of phospho-island was elaborated: it is a protein region that
bears at least one phospho-site, in turn beared by one or several overlapping phospho-peptides. It is important
to note that the position and number of phospho-sites are not necessarily the same in all of the overlapping
phospho-peptides.

In this inference process, the analogy with the previously described one is the following:

Peptides are replaced by phospho-peptides;

Proteins are replaced by phospho-islands.

30 Phospho-Proteomics X!TandemPipeline 0.4.43



In the rst step, the phospho-islands are delimited on the phosphorylated proteins. In the second step, sub-
groups of phospho-islands are created using all the phospho-islands identified in different proteins and that
share exactly the same set of phospho-peptides. At this step, any remaining phospho-island defined by a subset
of phospho-peptides only partially defining a sub-group is disregarded. In the example, phospho-island D1 is
defined by two phospho-petides, 8 and 9, that also are part of a sub-group defined by these two peptides but also
by phospho-peptide 10. Phospho-island D1 is thus disregarded.

In the third step, all the sub-groups that contain phospho-islands beared by the same protein are gathered in a
group.

31 Phospho-Proteomics X!TandemPipeline 0.4.43



3 The main program window

Proteomics data explorations, with X!TandemPipeline, entail, for a large part, the following steps:

Configuration of the X!Tandem external software that runs the database searches (producing peptide vs
mass spectrum matches—PSMs—, leading to the peptide identifications and ultimately to protein iden-
tifications);

Configuration of the protein database les (both the organism-specific protein databases and optional
contaminant-containing databases);

Loading of the mass spectrometry data acquisition les (the mzML format is recommended);

Running X!Tandem from inside of X!TandemPipeline;

Loading of the identification results produced during the previous step;

Note
X!TandemPipeline can also handle peptide vs spectrum matches data (peptide identification data)
from other software with the following formats:

mzIdentML;

pepXML;

Mascot DAT les

Relentless scrutiny of the peptide identification results. Optional modification of the results;

Protein inference, that is, protein identification on the basis of the peptide identifications. X!Tandem-
Pipeline implements a protein grouping algorithm, as described in Figure 2.8, “Protein inference: con-

structing a consolidated protein identifications list”, that leads to consolidated protein identi-
fications. The program has an interface geared towards the tweaking of the protein grouping process so
as to let the user in full control of the stringency with which the protein identifications list is ultimately
generated.

In this chapter, X!TandemPipeline's main window's user interface is described in detail, in particular in the way
it is a starting point for the main tasks briey mentioned above.

32 X!TandemPipeline 0.4.43



3.1 Starting a new X!TandemPipeline working session

To start a session, run X!TandemPipeline and the main program windows shows up as described in Figure 3.1,

“Main program window”.

The main program window contains three buttons described in detail in the text.

FIGURE 3.1: MAIN PROGRAM WINDOW

The main program window contains three buttons that start the following main tasks:

Run X!Tandem identifications. See Section 3.2, “Running X!Tandem identifications”.

Load identification results (mzIdentML, pepXML, Mascot, X!Tandem). See Section  3.4, “Loading

identification results”.

Load an X!TandemPipeline project. See Section 3.5, “Loading X!TandemPipeline projects”.

3.2 Running X!Tandem identifications

To run X!Tandem-based identifications, click onto the Run X!Tandem identifications button. This triggers the
opening of the window pictured in Figure 3.2, “X!Tandem-based identification configuration”.

33 Starting a new X!TandemPipeline working session X!TandemPipeline 0.4.43



The configuration of a X!Tandem run is performed in this configuration window (see text for details).

FIGURE 3.2: X!TANDEM-BASED IDENTIFICATION CONFIGURATION

The configuration of an X!Tandem run entails defining the following:

Configure the X!Tandem execution: This setting allows one to specify the path to the X!Tandem software
program. The version of the program, if found, is displayed below (in this case, Alanine 2017.2.1.4). This
feature is useful when the user wants to test multiple versions of the X!Tandem software.

Run X!Tandem through HTCondor: This setting is useful when running X!Tandem over the network on
a server supporting HTCondor1.

1  See https://research.cs.wisc.edu/htcondor/ ).

34 Running X!Tandem identifications X!TandemPipeline 0.4.43

https://research.cs.wisc.edu/htcondor/


Choose presets: This setting defines the parameters that X!Tandem must use. Either load already known
presets from the drop-down list widget or edit them (or create a new set) by clicking onto the Edit button.
Note that to load an existing presets le, it might be necessary to point X!TandemPipeline to the directory
that contains the presets le. Use the folder icon for this.

Choose database files: Add protein database les in the FASTA format. There must be at least one pro-
tein database that contains all the known proteins for the organism of interest (there might be as many
such database les as necessary) and optionally protein databases containing known contaminant proteins
(there might be as many such database les as necessary). Click onto the Clear list button to clear the data-
base les list and start anew if an error occurred (it is not possible to remove les one at a time).

Choose MS data files to process: Add the mass spectrometry data les (mzML or mzXML format) to be
processed by the X!Tandem software. As many les as necessary might be added in the list.

Tip
When using Bruker timsTOF data, click onto the Add Bruker timsTOF folders button to select
folders containing this kind of data. Bruker timsTOF data come as two les that must sit in the
same directory.

Output directory: This setting specifies the directory into which new les output by the X!Tandem process
need to be created. X!Tandem produces identification results in les in an XML format that X!Tandem-
Pipeline reads during a later step.

Number of threads: This setting defines the maximum number of execution threads that X!Tandem might
be using during its run.

3.3 Setting the X!Tandem run presets

The Edit button of the Choose presets group box described above triggers the opening of a dialog window where
the user might configure in the most detailed way the X!Tandem parameters. That dialog window is pictured in
Figure 3.3, “X!Tandem presets configuration window”.

35 Setting the X!Tandem run presets X!TandemPipeline 0.4.43



The configuration of the X!Tandem presets is performed in this configuration window. Each parameter is asso-
ciated to a manual page that can be displayed by clicking on the interrogation mark button next to it. It is possible
to load existing presets from le or to create brand new ones.

FIGURE 3.3: X!TANDEM PRESETS CONFIGURATION WINDOW

3.3.1 Loading existing presets configurations from file

It is possible to load existing X!Tandem presets configurations (which is useful in particular if the samples most
often come from the same instrument using the same configuration) by rst pointing X!TandemPipeline to
the right directory that contains the presets configuration le of interest (folder icon in Figure 3.3, “X!Tandem

presets configuration window”). The presets configuration les in the chosen directory are automatically
detected and listed in the drop-down list widget. At this point, select from that list the le of interest and click
onto the Load button.

36 Loading existing presets configurations from file X!TandemPipeline 0.4.43



Warning
It is compulsory to click onto the Load button to confirm loading of the le contents, because these are
not updated solely upon choosing the le name from the drop-down list.

3.3.2 Creating new presets configurations

It is possible to create a new presets configuration in a new le by clicking onto the New button. This opens an
input dialog window for the user to define a new le name (the edit widget is preset with the currently loaded
le's name suffixed with _copy).

Tip
One interesting feature of the new presets configuration creation process is that, if presets are already
loaded, X!TandemPipeline copies the currently displayed settings to the new le. From there, it is possible
to create a variant X!Tandem presets configuration, which eases the exploration of the right X!Tandem
parameters for a given sample data set.

3.3.3 Actual X!Tandem presets configuration

The dialog window pictured in Figure 3.3, “X!Tandem presets configuration window” contains a number
of tabs where various aspects of the X!Tandem run settings are handled. Each parameter's documentation can
be seen on the pane on the right hand side of the window by clicking onto the question mark button next to
it. These manual pages are authoritative because they are taken from the X!Tandem software package with no
transformation whatsoever.

Once the configuration has been performed, click onto the OK button. If the parameters were modified,
X!TandemPipeline asks if they should be stored in the le.

3.3.4 Running a properly configured X!Tandem process

Once the X!Tandem settings configuration dialog window has been closed, it is possible to run X!Tandem from
inside X!TandemPipeline by clicking onto the Run button at the bottom of the window pictured in Figure 3.2,

“X!Tandem-based identification configuration”.

While the computation is carried over, the program shows the feedback dialog window pictured in Figure 3.4,

“X!Tandem presets configuration window”.

37 Creating new presets configurations X!TandemPipeline 0.4.43



The text in this feedback dialog window is getting incrementally printed all along the computation.

FIGURE 3.4: X!TANDEM PRESETS CONFIGURATION WINDOW

Once the computation is finished, the feedback dialog window closes and the user is returned to the main pro-
gram window (Figure 3.1, “Main program window”). From there, it is possible to open the X!Tandem results
le located in the output directory configured above. There are as many output les (XML-based format, and
xml extension) as there were mass spectrometry data les to process. The loading of the results les is described
in Section 3.4, “Loading identification results”.

3.4 Loading identification results

The loading of identification results comes with a minimal set of configuration required to instruct X!Tandem-
Pipeline on the way to handle contaminant proteins, for example. This process is pictured in Figure 3.5, “Con-

figuration of the loading of the identification results” and is described in the following section.

38 Loading identification results X!TandemPipeline 0.4.43



Loading identification results comes with some configuration that is described in the text.

FIGURE 3.5: CONFIGURATION OF THE LOADING OF THE IDENTIFICATION RESULTS

39 Loading identification results X!TandemPipeline 0.4.43



3.4.1 Configuration of the parameters

Results handling mode: there are two possibilities:

Combine: in this mode, all the identification results coming from different identification results
les are merged into a single set. That single set is the basis for the protein inference step and the
identified proteins are listed into a single protein list window.

Individual: in this mode, the identification results coming for various les are kept separated. Thus,
the identification results coming from each le are used for a separate protein inference step. The
identified proteins list is thus displayed for each single file in turn. The selection of the le for which
the protein list needs to be displayed is done via the main program window that changes its appear-
ance:

When loading multiple identification results les in Individual mode, the selection of any given
identification results le is performed by selecting its name from the drop-down list widget and by
clicking onto the View protein list button. Note that some metadata about the identifications are
updated beneath the drop-down list widget.

FIGURE 3.6: SELECTING A PARTICULAR IDENTIFICATION RESULTS FILE'S DATA SET

Right after having selected an identification results le, click onto the View protein list to display
the protein identifications list. That list has been obtained by performing the protein inference on
the le's protein identification results (see Section 2.2.5.4, “Protein Inference: from PSMs to

Protein Identities”). The window that opens up will be described later FIXME cross ref.

40 Configuration of the parameters X!TandemPipeline 0.4.43



Tip
It is possible to open multiple protein list windows, each showing the identifications from

a different le: to that end, when clicking onto the View protein list button, keep the Ctrl

keyboard key pressed.

Choose results files: by clicking onto the Add files button, the user is provided a le selection dialog box
from which any number of protein identification results les might be selected for loading.
Note that it is possible to list all the opened protein identification results les by clicking onto the View
MS identification list button. The window that opens up will be described later FIXME cross ref.

Contaminants: there are two possibilities here.

Contaminants files: when this radio button widget is selected, the list of contaminant proteins will
be loaded from the les selected by clicking onto the Add files button.

Contaminant regular expression: when this radio button widget is selected, a text edit widget is
shown, replacing the widget listing the contaminants database les. In this text edit widget, the user
may enter a regular expression to match the accession number eld of the protein databases that
were used for the protein identification step. In this situation, the user must use specially crafted
protein databases in which the contaminant proteins were tagged on the accession number using
a particular pattern. That pattern is then matched against the Contaminant regular expression that
the user enters in the text edit widget.

Contaminant removal mode: there are two possibilities. The contaminant removal is the process by which
when identified proteins match proteins in the contaminants realm (either from the contaminants dabase
les or as determined using the regular expression) they are disregarded for the later protein visualization
steps.

Protein list: in this mode, as soon as a protein identification loaded from a protein identification
results le matches a contaminant protein, it is disregarded.

Groups: in this mode, the protein inference process goes all the way through to the determination of
the proteins groups (see Figure 2.8, “Protein inference: constructing a consolidated pro-

tein identifications list”). When protein groups have sub-groups that contain a contamimant
protein, then the whole group is disregarded. This might appear drastic, but our experience is that
most often, the sub-groups in a group identify proteins belonging to the same family. Therefore, if
one protein is contaminant, all the other proteins are supposed to be also.

Peptide and protein filters: this group box widget holds some parameters that configure the way protein
inference is to be performed.

41 Configuration of the parameters X!TandemPipeline 0.4.43



Peptide threshold on: there are two possibilities:

E-value: all the PSMs having an expectation value higher than that value are disregarded. En-
ter the value in the spin box widget labelled Peptide E-value. A typical value for the X!Tan-
dem engine is 0.05. When more stringent results are desirable, setting 0.02 should yield satis-
factory results. See Section 2.2.5.2, “Computation of the Peptide Expectation Value (E-

value)” of a detailed explanation of the E-value computation.

FDR (false rate discovery): the PSMs are disregarded if their FDR value does not match this
parameter. Enter the value in the spin box widget labelled Peptide FDR. A typical setting is
1%.

Tip
Using FDR is most useful when the identification results come from a database
searching engine that does not compute an E-value. However, it does only work if
the searching step was performed also on a decoy database. In X!Tandem the decoy
database is crafted by reversing the peptide sequences. In this case, when proteins are
identified on the basis of the reversed peptide PSM, then the protein identity is tagged
with the “reversed” string, which might be used with the Contaminant regular ex-
pression setting defined earlier.

Number of peptides per protein: this is the minimal required number of peptides that must be found
to identify a protein. These peptides have to be from non-contaminant proteins, of course.

Overall samples: when checked and if multiple identification results les are to be loaded, then the
Number of peptides per protein requirement might be fulfilled by looking for peptides in all the
loaded les. For example, if one results le provides one peptide for a protein identification and
another le provide another peptide (different from the rst one) to identify the same protein, and

42 Configuration of the parameters X!TandemPipeline 0.4.43



if the Number of peptides per protein is 2, then the protein is considered identified. If not checked,
that number of peptides requirement must be fulfilled by looking into each results le separately.
This last setting is more stringent. A typical value for this setting is 2.

Tip
This setting needs to be checked in at least one case: when a complex peptidic mixture is
separated by ion chromatography (typically on an SCX—strong cation exchange—resin)
and the different fractions are analyzed by bottom-up proteomics. The peptides coming
from a given protein might be located in different fractions, and thus in different protein
identification results les!

Protein Evalue: threshold above which a protein identification is disregarded (see Section 2.2.5.3,

“Computation of the Protein Expectation Value (E-value)”).

Protein Evalue (log10): convenience spin box widget for the user to easily set the protein E-value.

Pep repro: if set to 1, a peptide, to be accounted for, needs to be found in one protein identification
results le. If set to a greater number, then that peptide needs to be found in that number of results
les. This setting sets more stringent protein identification conditions each time it is incremented.

3.4.2 Saving X!TandemPipeline projects

Once exploration and optional modication of the identification data have been performed, the user can save the
resulting data set into a X!TandemPipeline project by selecting the Save project menu item of the File menu in the
main program window (the extension of the le name typically should be xpip ). See Section 3.5, “Loading

X!TandemPipeline projects” for loading such a project.

3.5 Loading X!TandemPipeline projects
Loading of X!TandemPipeline project les (le of xpip ) extension) is only possible if the user has previously

Loaded identification results;

Saved the data to an X!TandemPipeline project le using the Save project menu item of the File menu in
the main program window.

43 Saving X!TandemPipeline projects X!TandemPipeline 0.4.43



4 Exploring identification data

This chapter describes in detail all the steps that the user accomplishes in their data exploration session. The
general workflow is to start by looking a a protein identification results window and then by going into the
details of the various identifications listed in it. This latter task entails looking into the peptides that provided the
protein identification and then looking at the mass spectrum that provided the peptide identification. The mass
spectrum, that is, the MS/MS spectrum has features aimed at allowing the user to make an informed opinion on
the validity of the peptide vs mass spectrum match (PSM) at hand. At each moment, it is possible to invalidate a
PSM and the identification results are recomputed automatically by taking into account the modification entered
by the user.

4.1 The Protein Identifications List Window

When identification results les are loaded, X!TandemPipeline automatically perform the protein inference
process by using the configuration settings set as described in Section 3.4.1, “Configuration of the parame-

ters”.

4.1.1 The Protein Identifications List Table View

When the protein inference process is finished, the X!TandemPipeline displays the protein identifications list in
a table view, as pictured in Figure 4.1, “”.

44 The Protein Identifications List Window X!TandemPipeline 0.4.43



The protein identifications list window displays the proteins assembled into groups. A number of metadata
about the identifications are shown in a number of colums, the content of which is described in detail in the text.

FIGURE 4.1: 

The contents of the protein identifications list window are detailed below:

Checked: if checked, the identified protein sitting on the table row is set to an “accepted” state. By default,
all proteins are set to this accepted state. Unchecking a protein determines the protein inference reprocess-
ing, because disregarding a protein modifies the whole protein identifications results set.

group: the protein group the protein belongs to.

accession: the accession number eld of the protein database.

description: the description eld in the protein database.

log(E-value): the Log10 of the protein E-value;

E-value: the protein E-value;

spectra: the number of spectra that identified the protein.

specific spectra: the number of spectra that identified only this protein.

45 The Protein Identifications List Table View X!TandemPipeline 0.4.43



sequences: the number of peptidic sequences that can be assigned to this protein.

specific sequences: the number of peptidic sequences that can be assigned only to this protein.

coverage: the percentage of the protein sequence covered by the peptides that identified it.

MW: the molecular weight of the protein (Mr).

PAI: “Protein abundance index”. This index was defined as the “number of peptides identified divided
by the number of theoretically observable tryptic peptides”. See https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC186633/ .

emPAI: “Exponentially modified protein abundance index”. This index was defined as emPAI = 10PAI − 1.
See https://pubmed.ncbi.nlm.nih.gov/15958392/ .

It is possible to select the columns that must be displayed in the table by checking or unchecking the correspond-
ing item in the Columns menu.

The Show only menu allows one to select the kind of protein items to be shown:

Valid proteins: when check the program only shows valid proteins, that is protein identifications that full-
fill the restriction parameters, like protein E-value, for example. These parameters were set at protein iden-
tification results el loading time but can be modified later.

Checked proteins: show only the proteins that were checked. This setting is useful when the user has
unchecked a number of proteins and that they want to regularly keep an eye on them. When proteins
are unchecked, the protein inference process is run anew to compute a new grouping by taking not into
account the proteins that were disregarded.

Grouped proteins: only show the proteins that belong to a group.

The protein identifications list window picture in the figure show greyed protein identities. These are proteins
that, by current filter parameters (E-value threshold, for example), are considered not valid.

4.1.2 Operations in the Protein Identification List Window

The protein identifications list window houses a number of pretty interesting features that let the user scrutinize
the protein identifications and also modify the results to suit either more or less stringent filtering parameters.

Searching data in the table view.  One interesting feature of the protein identifications list window is the
ability to search through the table's contents using the Search item at the bottom of the window. A number of
elds of the protein record, that is, columns in the table view might be searched.

Dynamic setting of the filter parameters.  X!TandemPipeline provides a rather high level of flexibility:
once a protein identification results set of les has been loaded and that the protein inference process is achieved,

46 Operations in the Protein Identification List Window X!TandemPipeline 0.4.43

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC186633/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC186633/
https://pubmed.ncbi.nlm.nih.gov/15958392/


the resulting protein groups are displayed in the protein identification list window. At this time, the grouping
was performed using the parameters set as pictured in Section 3.4.1, “Configuration of the parameters”. It
is nonetheless possible to modify these parameters on the y using the main program window's Filter parameters
tab, as pictured in Figure 4.2, “Protein identification filter parameters tab of the main window”.

The filter parameters in this dialog box window do mirror the ones that one can set prior to loading protein
identification results les. When modified, these parameters elicit a complete run of the protein inference process.

FIGURE 4.2: PROTEIN IDENTIFICATION FILTER PARAMETERS TAB OF THE MAIN WINDOW

Real time update of the false discovery rate. The false discovery rate (FDR) is recalculated at each protein
inference process. The data regarding this quality assessment criterion are shown in Figure 4.3, “False discovery

rate (FDR) data after a protein inference process is run”.

47 Operations in the Protein Identification List Window X!TandemPipeline 0.4.43



The various data bits about the false discovery rate that is computed each time a protein inference process is run.
Note that it is possible to modify the Decoy settings, after which the Apply Compute cumulated FDR on PSM
button triggers the recalculation of the FDR. FIXME.

FIGURE 4.3: FALSE DISCOVERY RATE (FDR) DATA AFTER A PROTEIN INFERENCE PROCESS IS RUN

Distribution of mass errors on PSMs plotted in a histogram.  It is possible to visualize the distribution
of the mass errors over the whole dataset, as pictured in Figure 4.4, “Mass precision quality assessment”.
The histogram plots the number of mass spectra that could achieve a PSM against the mass error (mass delta),
that is, the difference between the experimental peptide mass and the calculated peptide mass. Figure 4.4, “Mass

precision quality assessment”.

48 Operations in the Protein Identification List Window X!TandemPipeline 0.4.43



The histogram plots the number of PSMs against the mass error calculated between the experimental mass of
the peptide and the calculated mass.

FIGURE 4.4: MASS PRECISION QUALITY ASSESSMENT

The mass delta calculation involves only the peptides that successfully identifed proteins that are currently
checked in the protein identification list and that satisfy the filter parameters. The proteins identified in the de-
coy database are not processed. The unit of the mass delta may be selected using the Unit drop-down list. Two
units are available: ppm (for part-per-million) or Dalton.

Exporting the final protein identifications list to a spread sheet.  Once all the proteins in the identifi-
cations list have been properly checked, the user might export the data set to an OpenDocumentFormat (ODF)
spread sheet le using the As ODS file menu item of the main window's Export menu.

49 Operations in the Protein Identification List Window X!TandemPipeline 0.4.43



4.1.3 Delving inside the protein identification data

The protein identifications list table view, as pictured in Figure 4.1, “” is actually an active matrix where the user
can easily trigger the exposition of the data that yielded any protein identification element of the table. This is
simply done by clicking onto any cell of the table at the row matching the protein for which scrutiny of the data
is requested.

Depending on the column at which the mouse click happens, there might be two different windows showing up:

The Protein details window, showing the sequence of the protein, the matching peptides, as pictured
below:

When one cell in the Accession, Description or Coverage column is clicked, this window shows up and
displays the sequence of the protein, the coverage of the peptides and other useful data.

FIGURE 4.5: PROTEIN DETAILS AS DISPLAYED WHEN CLICKING ONE ROW OF THE TABLE VIEW

When one cell in any one of the remaining columns is clicked, the window that shows up is the Peptide
list window showing all the peptide identifications list, to be described in the next section.

50 Delving inside the protein identification data X!TandemPipeline 0.4.43



Tip
When clicking one cell in one column and one given row, the corresponding window shows up, if one
was not already opened. If one window was already opened, no other window shows up, but the existing
window has its data updated to match the new protein row being clicked on.

It is possible to have multiple windows opened at a time by clicking a new row while maintaining the
Ctrl  key pressed.

4.2 The Peptide Identifications List Window

The peptide identifications list window displays all the data in a table view similar to the one used to display the
protein identifications list described in the previous sections.

4.2.1 The Peptide Identifications List Table View

The peptide identifications list table view has a pretty large number of columns to display all the data about each
peptide that identified a given protein. These columns are described in the following figures.

The peptide identifications list table view has many columns, this one is the rst part over two.

FIGURE 4.6: PEPTIDE IDENTIFICATIONS LIST TABLE VIEW (1)

51 The Peptide Identifications List Window X!TandemPipeline 0.4.43



The peptide identifications list table view has many columns, this one is the second part over two.

FIGURE 4.7: PEPTIDE IDENTIFICATIONS LIST WINDOW (2)

The table's contents are well described by the column headers that are self-explanatory. When hovering over a
column header with the mouse cursor, a tool-tip explanatory text is displayed.

It must be noted that more columns might make the table view depending on the protein identification data that
were loaded. Indeed, depending on the database searching engine that was used for the protein identification,
the data to be displayed vary. The whole list of columns that might be displayed in the table view are pictured in
Figure 4.8, “Columns that populate the peptide identifications list table view”

Depending on the provenience of the protein identifications (the database search engine), the columns that are
part of the table view differ. This full list is displayed when selecting the Columns menu.

FIGURE 4.8: COLUMNS THAT POPULATE THE PEPTIDE IDENTIFICATIONS LIST TABLE VIEW

52 The Peptide Identifications List Table View X!TandemPipeline 0.4.43



4.2.2 Operations in the Peptide Identification List Window

The peptide identifications list window houses a number of pretty interesting features that let the user scrutinize
the peptide details.

Searching data in the table view.  One interesting feature of the peptide identifications list window is the
ability to search through the table's contents using the Search item at the bottom of the window. A number of
elds of the protein record, that is, columns in the table view might be searched.

Exporting the final protein identifications list to a spread sheet.  Once all the peptides in the identifi-
cations list have been properly checked, the user might export the data set to an OpenDocumentFormat (ODF)
spread sheet le using the As ODS file menu item of the main window's Export menu.

4.2.3 Delving inside the peptide identification data

The peptide identifications list table view, as pictured in Figure 4.6, “Peptide identifications list table view

(1)” is actually an active matrix where the user can easily trigger the exposition of the data that yielded any peptide
identification element of the table. This is simply done by clicking onto any cell of the table at the row matching
the peptide for which scrutiny of the data is requested.

4.2.3.1 The Peptide Details Window

When clicking on any cell of the peptide identifications list table view, one window shows up that details the
various data elements for the peptide documented in the table row. The window is pictured in Figure 4.9, “Pep-

tide vs mass spectrum details”.

53 Operations in the Peptide Identification List Window X!TandemPipeline 0.4.43



Each row of the peptide identifications list table view holds data about one of the peptides that identified a given
protein. When clicking onto any cell of the table view, the window in this figure shows up, describing all the
details about that peptide vs mass spectrum match.

FIGURE 4.9: PEPTIDE VS MASS SPECTRUM DETAILS

In Figure 4.9, “Peptide vs mass spectrum details”, the two graphs show the following:

The top graph displays the mass spectrum of this PSM. This MS/MS spectrum has its recognized peaks
labelled in the y and bion series.

The bottom graph plots, for each matching MS/MS peak (that is, b or y series ions), the error (mass
delta) compared to the theoretical ion mass. In this example, we see that the y ion series is almost perfectly
matched (low error and also all the errors in the same value range).

54 Delving inside the peptide identification data X!TandemPipeline 0.4.43



Tip
It is possible to zoom in on a region of the graphs by positioning the mouse cursor on the region of interest
and then rotating the mouse wheel. To unzoom, simply rotate the mouse wheel in the reverse direction.

The right hand side margin provides a number of data about the PSM, like the peptide E-value, the HyperScore,
the ion charge, the theoretical and experimental masses, the retention time at which this ion was detected… The
data bits are self-explanatory.

4.2.3.2 The XIC Viewer Window for the Peptide Details

One interesting feature of the Peptide details window, is the XIC button (top right) that triggers the calculation
of an extracted ion current chromatogram, as pictured in Figure 4.10, “The extracted ion current (XIC)

chromatogram viewer window”.

Tip: What is a XIC chromatogram?
The notion of extracted ion current chromatogram is best explained by describing the computation that
yields that chromatogram.

The user defines the m/z value for which the chromatogram is to be determined. The program iterates
in each MS (that is, full scan) spectrum and looks if an ion by that m/z value was encountered. If so, a
variable holding the cumulated intensity of that ion is incremented for the retention time at which the
mass spectrum was acquired. For example, if m/z value 1254.25 is searched for, and an ion of that m/z
value is found in the mass spectrum acquired at retention time 2.5 min, then a tuple variable is stored like
this: (2.5, intensity). Then, another mass peak by that m/z value is found in mass spectrum acquired at
retention time 47 min, for which another tuple is created: (47, intensity).

If the data are from ion mobility—mass spectrometry (IM-MS) experiments, then there might be a large
number of spectra acquired at a given retention time. For example, data from the Waters Synapt2 instru-
ment have 200 spectra acquired for any given retention time value (the spectra are drif-related spectra).
In Bruker timsTOF data, there are more than 700  spectra acquired at any given retention time. Thus,
the searched m/z value might be found more than once for a retention time value. In this case, the tuple's
intensity value is incremented by the intensity of the new peak of the m/z value at that specific retention
time value.

When the program has finished iterating in all the mass spectra of the acquisition, it plots the XIC chro-
matogram as intensity=f(retention time). This is the reason why it is a chromatogram.

55 Delving inside the peptide identification data X!TandemPipeline 0.4.43



The extracted ion current (XIC) chromatogram viewer is useful to scrutinize the mass data at the very origin of a
PSM. It is routinely used to ensure that the PSM is faithful. If not, the corresponding peptide can be unchecked
from the peptide identifications list table view, which triggers the running anew of the protein inference process.

FIGURE 4.10: THE EXTRACTED ION CURRENT (XIC) CHROMATOGRAM VIEWER WINDOW

The XIC viewer window displays the “guts” of the of MS spectrum of the precursor ion that was fragmented
and that yielded a PSM. The XIC chromatogram (lef plot panel) is actually a set of XIC chromatograms that
are superimposed in the plot widget (see Figure 4.11, “The extracted ion current (XIC) chromatogram

viewer window (zoomed view)”). One of the traces (legend +0) is for the rst peak of the isotopic cluster of
the searched ion in the MS data of the acquisition; the second trace (legend +1) is for the second peak of the
isotopic cluster. In the typical informatics-oriented style of numbering, the rst isotopic peak (only light isotopes
enter in the composition of the peptidic ion), is “isotope 0”; the the second isotopic peak (one light isotoope is
substituted with a heavy one) is “isotope 1”.

The right panel is a bar plot showing the theoretical isotopic ratio between the rst and the second peak of
the isotopic cluster (blue) with, superimposed, the experimental ratio. In the example, the match between the
experimental and the theoretical cluster shape is perfect.

56 Delving inside the peptide identification data X!TandemPipeline 0.4.43



Zoomed view over the two XIC chromatogram plots in the lef hand side plot widget.

FIGURE 4.11: THE EXTRACTED ION CURRENT (XIC) CHROMATOGRAM VIEWER WINDOW (ZOOMED VIEW)

Another interesting bit of information is the Fraction of Isotopic distribution number that reflects the ratio be-
tween the plotted isotopic cluster peaks over the whole theoretically calculated isotopic cluster (in which more
than one light isotope is substituted with a heavy isotope (with a mass increment of +2 and not +1). In the ex-
ample that ratio is 80 %.

To zoom in/out regions of the XIC chromatogram plot widget, hover the mouse cursor over the region of interest
and rotate the mouse wheel.

4.3 Handling Phospho-Proteomics Data
X!TandemPipeline is able to cope with phospho-peptides. The mass spectrometric data are acquired exactly as
usual with the mass spectrometer, but the sample preparation goes along theses steps:

Separate digestion of the samples (when there are more than one);

Labeling of the peptides, each sample gets a different label;

Pool of the whole set of peptides into a single mixture;

Separation of the peptides on a strong cation exchange (SCX) resin, collection of the fractions;

57 Handling Phospho-Proteomics Data X!TandemPipeline 0.4.43



Phospho-peptide enrichment using IMAC1 for each SCX fraction. The SCX fraction is loaded onto the
IMAC resin and, following a wash step, the phospho-peptides are eluted (pH-based elution). There is thus
a one-to-one relation between a SCX fraction and an IMAC-based purification fraction.

Mass spectrometric analysis of each IMAC-based phospho-peptide-enriched fraction.

X!Tandem needs to be configured in such a manner that it can generate all the theoretical peptides (and frag-
ments) that might bear the phosphoryl group. This process is described in the section below.

1  Immobilized-metal affinity chromatography.

58 Handling Phospho-Proteomics Data X!TandemPipeline 0.4.43



5 Stuff awaiting inclusion

Empty.

59 X!TandemPipeline 0.4.43



A GNU General Public License version 3

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and
change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change all versions of a program—to make sure it remains free software for all its users. We, the Free Software
Foundation, use the GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish),
that you receive source code or can get it if you want it, that you can change the software or use pieces of it in
new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the
rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it:
responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and
(2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free soft-
ware. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that
their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them,
although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' free-
dom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals

60 Preamble X!TandemPipeline 0.4.43

https://fsf.org/


to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to
prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to
extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict
development and use of software on general-purpose computers, but in those that do, we wish to avoid the
special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the
GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”.
“Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright per-
mission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier
work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or sec-
ondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying
a private copy. Propagation includes copying, distribution (with or without modification), making available to
the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere
interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and
prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is
no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work
under this License, and how to view a copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion.

61 TERMS AND CONDITIONS X!TandemPipeline 0.4.43



1. Source Code.
The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards
body, or, in the case of interfaces specified for a particular programming language, one that is widely used among
developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is in-
cluded in the normal form of packaging a Major Component, but which is not part of that Major Component,
and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface
for which an implementation is available to the public in source code form. A “Major Component”, in this con-
text, means a major essential component (kernel, window system, and so on) of the specific operating system (if
any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter
used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install,
and (for an executable work) run the object code and to modify the work, including scripts to control those ac-
tivities. However, it does not include the work's System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are not part of the work. For
example, Corresponding Source includes interface definition les associated with source les for the work, and
the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to
require, such as by intimate data communication or control ow between those subprograms and other parts
of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts
of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable
provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the un-
modified Program. The output from running a covered work is covered by this License only if the output, given
its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent,
as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your
license otherwise remains in force. You may convey covered works to others for the sole purpose of having them
make modifications exclusively for you, or provide you with facilities for running those works, provided that you

62 1. Source Code. X!TandemPipeline 0.4.43



comply with the terms of this License in conveying all material for which you do not control copyright. Those
thus making or running the covered works for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is
not allowed; section 10 makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-
Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling
obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws pro-
hibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures
to the extent such circumvention is effected by exercising rights under this License with respect to the covered
work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing,
against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices
stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep
intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the
Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

63 3. Protecting Users' Legal Rights From Anti-Circumvention Law. X!TandemPipeline 0.4.43



5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form
of source code under the terms of section 4, provided that you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a relevant date.

b. The work must carry prominent notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the
whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission
to license the work in any other way, but it does not invalidate such permission if you have separately
received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not
make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a
volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright
are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit.
Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also
convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical distribution medium),
accompanied by the Corresponding Source xed on a durable physical medium customarily used for soft-
ware interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium),
accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or
customer support for that product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this License, on a durable

64 5. Conveying Modified Source Versions. X!TandemPipeline 0.4.43



physical medium customarily used for software interchange, for a price no more than your reasonable cost
of physically performing this conveying of source, or (2) access to copy the Corresponding Source from
a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide the Corresponding
Source. This alternative is allowed only occasionally and noncommercially, and only if you received the
object code with such an offer, in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a charge), and offer equiv-
alent access to the Corresponding Source in the same way through the same place at no further charge. You
need not require recipients to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on a different server (operated
by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to nd the Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy
these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object
code and Corresponding Source of the work are being offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System
Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is nor-
mally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into
a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user, “normally used” refers to a typical or common
use of that class of product, regardless of the status of the particular user or of the way in which the particular
user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other in-
formation required to install and execute modified versions of a covered work in that User Product from a modi-
fied version of its Corresponding Source. The information must suffice to ensure that the continued functioning
of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and
the conveying occurs as part of a transaction in which the right of possession and use of the User Product is
transferred to the recipient in perpetuity or for a xed term (regardless of how the transaction is characterized),

65 6. Conveying Non-Source Forms. X!TandemPipeline 0.4.43



the Corresponding Source conveyed under this section must be accompanied by the Installation Information.
But this requirement does not apply if neither you nor any third party retains the ability to install modified object
code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the
User Product in which it has been modified or installed. Access to a network may be denied when the modifi-
cation itself materially and adversely affects the operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in
a format that is publicly documented (and with an implementation available to the public in source code form),
and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one
or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as
though they were included in this License, to the extent that they are valid under applicable law. If additional
permissions apply only to part of the Program, that part may be used separately under those permissions, but
the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from
that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain
cases when you modify the work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if autho-
rized by the copyright holders of that material) supplement the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in that material or in
the Appropriate Legal Notices displayed by works containing it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material; or

66 7. Additional Terms. X!TandemPipeline 0.4.43



e. Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who conveys the material
(or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that
these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section
10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License
along with a term that is a further restriction, you may remove that term. If a license document contains a fur-
ther restriction but permits relicensing or conveying under this License, you may add to a covered work mater-
ial governed by the terms of that license document, provided that the further restriction does not survive such
relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source les, a
statement of the additional terms that apply to those les, or a notice indicating where to nd the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or
stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt
otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (in-
cluding any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is rein-
stated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and
(b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder no-
tifies you of the violation by some reasonable means, this is the rst time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your
receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies
or rights from you under this License. If your rights have been terminated and not permanently reinstated, you
do not qualify to receive new licenses for the same material under section 10.

67 8. Termination. X!TandemPipeline 0.4.43



9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propaga-
tion of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy
likewise does not require acceptance. However, nothing other than this License grants you permission to prop-
agate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore,
by modifying or propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to
run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance
by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one,
or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity
transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the
work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession
of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it
with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License.
For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this
License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any
patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.
A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which
the Program is based. The work thus licensed is called the contributor's “contributor version”.

A contributor's “essential patent claims” are all patent claims owned or controlled by the contributor, whether
already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License,
of making, using, or selling its contributor version, but do not include claims that would be infringed only as
a consequence of further modification of the contributor version. For purposes of this definition, “control”
includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's es-
sential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the con-
tents of its contributor version.

68 9. Acceptance Not Required for Having Copies. X!TandemPipeline 0.4.43



In the following three paragraphs, a “patent license” is any express agreement or commitment, however denomi-
nated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent
infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not
to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work
is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available
network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be
so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3)
arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream
recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying
the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or
more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring
conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work
authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise
of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this
License. You may not convey a covered work if you are a party to an arrangement with a third party that is in
the business of distributing software, under which you make payment to the third party based on the extent of
your activity of conveying the work, and under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered
work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to in-
fringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions
of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work
so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the Program, the only way you could satisfy both those
terms and this License would be to refrain entirely from conveying the Program.

69 12. No Surrender of Others' Freedom. X!TandemPipeline 0.4.43



13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work
with a work licensed under version 3 of the GNU Affero General Public License into a single combined work,
and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered
work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version
of the GNU General Public License “or any later version” applies to it, you have the option of following the
terms and conditions either of that numbered version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the GNU General Public License, you may
choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be
used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version
for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are
imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

70 13. Use with the GNU Affero General Public License. X!TandemPipeline 0.4.43



16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according
to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil
liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source le
to most effectively state the exclusion of warranty; and each le should have at least the “copyright” line and a
pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

71 16. Limitation of Liability. X!TandemPipeline 0.4.43



This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program.  If not, see https://www.gnu.org/licenses/ .

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive
mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘ show w ’ and ‘ show c ’ should show the appropriate parts of the General Public
License. Of course, your program's commands might be different; for a GUI interface, you would use an “about
box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer”
for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see
https://www.gnu.org/licenses/ .

The GNU General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License.
But rst, please read https://www.gnu.org/licenses/why-not-lgpl.html .

72 How to Apply These Terms to Your New Programs X!TandemPipeline 0.4.43

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html


Colophon

About the authors. Filippo Rusconi is a senior research scientist at the French national research council (Centre
national de la Recherche scientifique, CNRS). Filippo has a background in biochemistry and organic chemistry
and was trained during his Ph.D. as a bioanalytical chemist. He has extensive knowledge of analytical techniques
involved in the study of biopolymers.

Filippo Rusconi is the author of a handbook about mass spectrometry for biochemists (French). The book was
published by the French sci/tech publisher Lavoisier (https://www.lavoisier.fr) .

Colophon. The look of this book (PDF le) is the result of me having read many books from the O'Reilly
publisher.

The frog on the book title page is a frog from Papua. This frog is able to hover when performing downwards
leaps. This picture is courtesy http://www.papuaweb.org

The typesetting of the book has been done on a Debian GNU/Linux computer using only Free Software. Use of
the DocBook Authoring and Publishing Suite (DAPS (https://github.com/openSUSE/daps) ) from SUSE
was key in the process.

The layout adopted for this book is an adaptation of the SUSE stylesheets. I would like to thank Frank Sunder-
meyer <fsundermeyer@opensuse.org> and Stefan Knorr <sknorr@suse.de> for being helpful with all my ques-
tions.

The main font used was EBGaramond (https://github.com/georgd/EB-Garamond)  and the sym-
bol/mathematical font was from the STIX project (https://www.stixfonts.org/)  (font: STIX2Math).

The screen shots were taken with Spectacle, the screen capture program shipped along with my KDE (https://

www.kde.org/)  desktop environment and resampled using The GNU image manipulation program The

Gimp (https://www.gimp.org/) . Illustrations were done in Inkscape (https://inkscape.org/) , a vecto-
rial drawing software.

73 X!TandemPipeline 0.4.43

https://www.lavoisier.fr
http://www.papuaweb.org
https://github.com/openSUSE/daps
https://github.com/georgd/EB-Garamond
https://www.stixfonts.org/
https://www.kde.org/
https://www.kde.org/
https://www.gimp.org/
https://www.gimp.org/
https://inkscape.org/

	X!TandemPipeline User Manual
	Contents
	Preface
	1. Software feature offerings and intended audience
	2. Feedback from the users
	3. Program and Documentation Availability and License

	Chapter 1. Generalities
	1.1. General concepts and terminologies
	1.1.1. Bottom-up Proteomics or Top-down Proteomics?
	1.1.2. Typical cycle of a mass spectrometer data acquisition
	1.1.3. Outline of an X﻿!﻿TandemPipeline working session

	1.2.  Citing the X﻿!﻿TandemPipeline software.
	1.3. Installation of the software
	1.3.1. Installation on MS Windows and macOS systems
	1.3.2. Installation on Debian- and Ubuntu-based systems
	1.3.3. Installation with an AppImage software bundle

	1.4. Building the software from source
	1.4.1. The dependencies required to build X﻿!﻿TandemPipeline
	1.4.2. Getting the source tarball
	1.4.2.1.  Using git
	1.4.2.2.  Using wget to download the tarball

	1.4.3. Building of the software


	Chapter 2. Fundamentals in Bottom-up Proteomics
	2.1. The Protein Biopolymer: Structure and Chemistry
	2.1.1. Protein Biosynthesis
	2.1.2. Protein Disrupting Chemistries
	2.1.2.1. Protein Cleavage
	2.1.2.2. Protein Fragmentation


	2.2. General Overview of Bottom-up Proteomics
	2.2.1. The First Step: Digestion of the Sample's Proteins
	2.2.2. Chromatographic Separation of the Peptidic Mixture
	2.2.3. Mass Spectrometric Analysis of the Peptides
	2.2.4. The Protein Databases and Their Use
	2.2.5. Matching Fragmentation Spectra with Theoretical Spectra
	2.2.5.1. Computation of the PSM HyperScore
	2.2.5.2. Computation of the Peptide Expectation Value (E-value)
	2.2.5.3. Computation of the Protein Expectation Value (E-value)
	2.2.5.4. Protein Inference: from PSMs to Protein Identities

	2.2.6. Phospho-Proteomics


	Chapter 3. The main program window
	3.1. Starting a new X﻿!﻿TandemPipeline working session
	3.2. Running X﻿!﻿Tandem identifications
	3.3. Setting the X﻿!﻿Tandem run presets
	3.3.1. Loading existing presets configurations from file
	3.3.2. Creating new presets configurations
	3.3.3. Actual X﻿!﻿Tandem presets configuration
	3.3.4. Running a properly configured X﻿!﻿Tandem process

	3.4. Loading identification results
	3.4.1. Configuration of the parameters
	3.4.2. Saving X﻿!﻿TandemPipeline projects

	3.5. Loading X﻿!﻿TandemPipeline projects

	Chapter 4. Exploring identification data
	4.1. The Protein Identifications List Window
	4.1.1. The Protein Identifications List Table View
	4.1.2. Operations in the Protein Identification List Window
	4.1.3. Delving inside the protein identification data

	4.2. The Peptide Identifications List Window
	4.2.1. The Peptide Identifications List Table View
	4.2.2. Operations in the Peptide Identification List Window
	4.2.3. Delving inside the peptide identification data
	4.2.3.1. The Peptide Details Window
	4.2.3.2. The XIC Viewer Window for the Peptide Details


	4.3. Handling Phospho-Proteomics Data

	Chapter 5. Stuff awaiting inclusion
	Appendix A. GNU General Public License version 3

